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Summary

It has been postulated that chromatin modifications
can persist through mitosis and meiosis, thereby se-

curing memory of transcriptional states [1–4]. Whether
these chromatin marks can self-propagate in progeny

independently of relevant trans-acting factors is an im-
portant question in phenomena related to epigenesis.

‘‘Adaptive cellular memory’’ displayed by yeast cells
offers a convenient system to address this question.

The yeast GAL genes are slowly activated by Gal4
when cells are first exposed to galactose, but their

progeny, grown in glucose media, exhibit a fast activa-
tion mode upon re-exposure to this sugar [5]. This ‘‘ga-

lactose memory’’ persists for several generations and

was recently proposed to involve chromatin modifica-
tions and perinuclear topology of the GAL genes clus-

ter [5, 6]. Here, we perform a heterokaryon assay dem-
onstrating that this memory does not have a chromatin

basis but is maintained by cytoplasmic factor(s) pro-
duced upon previous galactose induction. We show

that Gal3, the cytoplasmic rate-limiting factor that re-
leases the Gal4 activator, is dispensable for preserv-

ing galactose memory. Instead, the important memory
determinant is a close Gal3 homolog, the highly ex-

pressed Gal1 galactokinase, the residual activity of
which preserves memory in progeny cells by rapidly

turning on the Gal4 activator upon cells’ re-exposure
to galactose.

Results and Discussion

Analysis of Transcriptional Memory

at a Single-Cell Level
The activation kinetics of GAL genes transcription has
been previously studied by measuring their average
mRNA levels in populations of yeast cells. In this report,
we use yeast strains expressing Gal1-GFP or Gal7-GFP
hybrid proteins and FACS analysis, which allows for the
quantitative measurements of transcriptional kinetics
and provides additional information on the structure of
a yeast population at a single-cell resolution [7, 8]. We
first show that this method can be used to confirm the
previously described ‘‘galactose memory’’ phenomenon
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[6]. Yeast cultures pregrown in glucose responded to
galactose by initially activating transcription of GAL1
(Figures 1A and 1C) and GAL7 (Figures S1A and S1C in
the Supplemental Data available online) slowly and with
a clear binary (either on or off) fashion over the time re-
quired to reach a fully activated uniform pattern. When
the progeny cells of such a fully activated culture were
consecutively grown back in glucose for 6–7 genera-
tions (12 hr) and then rechallenged with galactose, they
reactivated GAL1 and GAL7 transcription rapidly and in
a graded (uniform) pattern as opposed to the binary one
displayed by their progenitors (Figures 1B and 1C; Fig-
ures S1B and S1C). This graded fashion of the second
response indicates that every single cell in the yeast
population acquires galactose memory characterized
by the accelerated transcriptional activation rate of GAL
genes. We should mention that when pregrown in no
glucose media, such as in raffinose media, yeast cells
respond to galactose for the first time with a graded
and very rapid kinetics, masking the accelerated second
response after consequent growth in glucose (data not
shown).

Transcriptional Memory Is Based on Cytoplasmic
Determinants

It has been recently proposed that modified chromatin,
such as that characterized by the deposition of H2A.Z
histone variant [6] or that resulting from the function of
the Swi/Snf chromatin remodeler [5], is required for the
rapid reactivation of the GAL1 promoter in cells that
were previously exposed to galactose and consequently
grown for some generations in glucose. This idea for
a chromatin, or more generally nuclear, basis of memory
was investigated by using a heterokaryon approach;
normally, conjugation of haploid yeast cells of opposite
mating types is followed by plasma membrane fusion
and immediate nuclear fusion resulting in the formation
of a diploid zygote. Mutations of genes required specifi-
cally for efficient nuclear fusion, such as the kar1-1
mutation [9], allow plasma membarane fusion to occur,
resulting in the formation of a heterokaryon cell, in which
the two nuclei are kept separately in a common cytoplas-
mic environment. We exploited this nuclear fusion defect
conferred by the kar1-1 mutation and generated hetero-
karya derived from differently treated cells: glucose-
grown (naive) KAR1 cells carrying the GAL1-GFP allele
were crossed with kar1-1 mutants with no GFP-tagged
GAL1 that had been pregrown in galactose and succes-
sively cultured in glucose. Galactose induction of the
crossed mixed cell population revealed rapid activation
of the GAL1-GFP promoter specifically in heterokarya
cells, as opposed to GAL1-GFP-carrying haploid cells
(Figure 2A). Importantly, a much slower response was
observed in heterokarya derived when crossing naive
GAL1-GFP cells with kar1-1 mutants continuously grown
in glucose (Figure 2B). Thus, otherwise naive nuclei allow
rapid transcriptional activation once they are found in
a cytoplasmic environment that had been previously
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exposed to galactose. This observation strongly sug-
gests that transcriptional memory is not dependent on
prior transcriptional activation and relevant book-mark-
ing of chromosomal regions in cis, but it rather relies on
factors acting in trans.

Figure 1. Galactose Activation and Reactivation in the Single-Cell

Level

(A) Single-cell pattern of GAL1-GFP activation of glucose-pregrown

cells. Histograms of FACS analysis at representative time points

showing GFP fluorescence measurements taken from at least

10,000 yeast cells growing in glucose (red) and subsequently grow-

ing in galactose for 270 min (blue), 360 min (green), or 12 hr (black).

The Gal1-GFP hybrid protein contains the entire Gal1 amino acid

sequence and is expressed from the native GAL1-10 promoter and

chromosomal position. Cells were cultured for at least 24 hr in rich

YP-2% glucose medium, and then they were washed and trans-

ferred to YP-2% galactose medium, while kept at low cell density

(OD < 0.2) throughout the experiment.

(B) GAL1-GFP reactivation of cells previously exposed to galactose.

Histograms representing GFP distributions taken at 0 min (red), 120

min (blue), and 210 min (green) after galactose reinduction. Cells

were grown for 24 hr in YP-2% galactose medium, washed, and

transferred in YP-2% glucose for 12 hr before they are reinduced

in galactose and used for FACS analysis as in (A). Optical density

measurements and colony formation ability indicated that yeast

cells have undergone 6 to 7 cell divisions during 12 hr culture in

glucose.

(C) Activation kinetics of the GAL1-GFP reporter expressed in cells

treated as described in (A) and (B), (blue and pink curves, respec-

tively). Mean GFP values at indicated time points (30 min intervals)

were estimated by the WinMdi software and represent average of

at least three independent experiments. Day-by-day experimental

variation did not exceed that of 15% of the average values.
The Signal Transducer Gal3 Is Dispensable for
Memory Persistence

Transcription of GAL genes strictly depends on the Gal4
transcriptional activator, which, although it is expressed
and binds DNA even in glucose-grown cells [10, 13], is
inactive because of its interaction with the negative reg-
ulator Gal80 [11, 12]. Exposure to galactose leads to the
sequestration of Gal80 to the cytoplasm by a complex
formed between galactose, ATP, and the Gal3 regulator.
As a result, active Gal4 initiates transcriptional activation
of the GAL catabolic pathway and further activates
GAL3 transcription, thereby setting up a Gal3-Gal4 pos-
itive-feedback loop [14–17]. Although Gal3 is expressed
at low levels compared to the other GAL genes (e.g.,
GAL1), its key role in activating Gal4 makes it a candidate
for being the cytoplasmic factor preserving galactose
memory in progeny cells. This hypothesis can be exam-
ined by using cells lacking GAL3 and tested for their
ability to exhibit galactose memory. However, transcrip-
tional activation of GAL genes and cell growth upon first
exposure to galactose is prevented in gal3D cells. To cir-
cumvent this problem, we applied a standard gene-dis-
ruption protocol to delete the GAL3 gene from wild-type
cells growing continuously in galactose media. By se-
lecting and purifying GAL3 gene-disrupted cells in
growth media containing galactose as a sole carbon
source, we had been able to generate gal3D mutants
that fully express Gal1-GFP (Figure 3A). This confirms
that Gal3 is not required for the maintenance of the
GAL gene activation state and is consistent with the pre-
viously described ‘‘long-term adaptation’’ property of
gal3D cells, which ultimately succeed to activate the
GAL pathway after being cultured in galactose for days
[18]. Unexpectedly, when the gal3D mutants expressing
GAL1-GFP are consequently cultured in glucose for 12 hr
and then rechallenged with galactose, they retain the
ability to rapidly and uniformly reactivate GAL1-GFP
transcription (Figures 3A and 3C). This clearly indicates
that Gal3 neither is the cytoplasmic factor responsible
for galactose memory nor is it required for the initiation
of the ‘‘memorized’’ rapid transcriptional response. The
reactivation ability of the gal3D cells is permanently
lost after longer, memory-erasing, time (30 hr) of growth
in glucose (Figures 3B and 3C); by that time point, GAL1
transcription can not be induced by galactose, as is
typically observed in gal3D mutants [18].

The Gal1 Galactokinase Is Responsible for

Transcriptional Memory
It has been previously shown that the Gal1 galactoki-
nase, which is a close homolog of Gal3 (70% identity,
90% similarity [19]), interacts with Gal80 in vivo, albeit
with lower affinity compared to that of Gal3, and that
its constitutive expression suppresses the gal3D muta-
tion [20–22]. On the other hand, our analysis indicates
that reduction of the intracellular Gal1 levels in galac-
tose-pregrown cells after cell divisions in glucose media
correlates with galactose memory loss (see Figure S3).
These results suggest that residual Gal1 can perform a
Gal3-like function in sequestering Gal80, thereby allow-
ing Gal4 to reactivate transcription in progeny cells, so
we investigated whether Gal1 determines galactose
memory. Indeed, heterokarya between KAR1, GAL1-GFP
naive cells and kar1-1,gal1D double mutants pregrown in
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galactose fail to respond rapidly to galactose induction
(Figure 2C). In order to quantify the Gal1 involvement in
galactose memory, we analyzed the reactivation kinetics
of a gal1D strain expressing the Gal7-GFP hybrid protein.
By contrast to gal3D or wild-type cells, the gal1D mutants
pregrown to galactose and consecutively cultured for 12
hr in glucose media fail to reactivate rapidly the GAL7
gene after a second exposure to galactose (Figure 4A).
In fact, the activation kinetics of these cells is identical
to those that have never experienced galactose before
(Figure 4A). Identical results were obtained with gal1D

cells expressing the GFP protein from the native GAL1
promoter, with a gene reporter (GAL1pr-GFP) that lacks
the GAL1 coding sequence (Figure S4A). In order to ex-
clude the possibility that compromised galactose catab-
olism in gal1D cells accounts for memory loss, we also
demonstrate that cells expressing GAL1 by the constitu-
tive ADH1 promoter activate rapidly and uniformly tran-
scription of the Gal7-GFP hybrid with the same kinetics
either after a first exposure or after a re-exposure to ga-
lactose (Figures 4B–4D). In fact, the rate of activation of
Gal7-GFP hybrid in these cells displays a more rapid pat-
tern than the one acquired by the wild-type cells pre-
exposed to galactose (Figure 4D). Identical results were
obtained when the GAL1-GFP reporter was assayed (Fig-
ure S4B). In order to support that it is the Gal3-like activity
Figure 2. Heterokaryon Assay for Identifying the Base of Galactose Memory

(A) Light and GFP images taken at indicated time points of galactose induction of naive GAL1-GFP-carrying cells crossed with galactose-pre-

grown kar1-1 mutants. Wild-type GAL1-GFP cells grown for 24 hr in YP-2% glucose continuously kept at low density (<0.2) were mixed with an

equal number (w107) of opposite mating type kar1-1 mutant cells that had been grown for 12 hr in YP-2% galactose and consecutively for 6 hr in

YP-2% glucose. For mating to take place, the mixture of haploid cells was spotted and further incubated for additional 5 hr in YP-2% glucose

agar plate. By that time, the mating efficiency was roughly estimated to exceed 60%. After this mating period, cells were diluted in YP-2%

galactose medium and samples taken at indicated time points were subjected to UV-epifluoroscence microscopy. Heterokarya display a char-

acteristic elongated morphology with a bud often emerging from central position and two distinct nuclei, as indicated by DAPI staining shown

in Figure S2.

(B) Light and GFP images at indicated time points of galactose induction of naive GAL1-GFP-carrying cells crossed with kar1-1 mutants

continuously grown in glucose. Heterokarya were formed, challenged, and examined for galactose response as in (A), with the exception that

kar1-1 haploid mating partners was continuously (18 hr) grown in glucose.

(C) Light and GFP images at indicated time points of galactose induction of heterokarya derived by crossing kar1-1, gal1D double mutants with

glucose-grown GAL1-GFP-carrying wild-type cells. kar1-1, gal1D cells were grown in YP-2% galactose-2% raffinose media, transferred to YP-2%

glucose, crossed with glucose-grown GAL1-GFP wild-type cells as in (A), and challenged for reactivation in YP-2% galactose-2% raffinose.
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of Gal1 that is responsible for preserving galactose mem-
ory, we expressed Gal3 itself from the GAL1 promoter
(GAL1pr-Gal3) in a strain lacking the GAL1 gene (gal1D),
and we investigated the reactivation kinetics of the
GAL7-GFP reporter. As indicated in Figure S5, galac-
tose-pregrown cells carrying GAL1pr-GAL3 can rein-
duce GAL7-GFP transcription after consequent growth

Figure 3. Role of Gal3 in Galactose Memory Persistence

(A) GAL1-GFP reactivation in galactose-experienced gal3D mutant

cells. Histograms of FACS analysis at representative time points

showing GFP fluorescence measurements taken from gal3D cells

grown continuously in galactose (black), subsequently cultured in

glucose media for 12 hr (red), and reinduced by galactose for 120

min (blue) or 180 min (green). gal3D yeast colonies were obtained

by transforming wild-type GAL1-GFP-carrying cells grown o/n in

YP-2% galactose medium with GAL3 disruption linear DNA frag-

ment. All subsequent colony-purification process was done in the

presence of galactose as the sole carbon source. gal3D colonies

were confirmed by PCR and cultured in liquid YP-galactose

medium, and a sample was subjected to FACS analysis (black). After

consecutive growth for 12 hr in glucose (GFP reaching close to

background levels, red curve), cells were challenged again by galac-

tose and analyzed by FACS.

(B) Activation defect of gal3D mutants. Galactose-pregrown cultures

of gal3D cells bearing GAL1-GFP fusion were transferred in YP-

glucose media and cultured for 30 hr, instead of 12 hr described in

(A), before galactose reinduction. Representative histograms display

GFP measurements taken at 0 min (red), 210 min (blue), and 240 min

(green) after galactose reinduction.

(C) Graphs of GFP mean values over time obtained by the FACS anal-

ysis of (A) and (B) (blue and pink graphs, respectively) taken in 30 min

intervals.
in glucose, as opposed to gal1D cells expressing the
native GAL3 gene. The above analysis strongly suggests
that Gal1 is absolutely required for preserving galactose
memory and argues against a parallel operation of addi-
tional redundant mechanism(s) thatmay contribute to this
phenomemon. Conversely, it seems that Gal1 is also a
sufficient source of ‘‘galactose information’’ for a naive
culture. We suggest that the Gal3-like function of the
highly expressed Gal1 in galactose pre-exposed cells is
responsible for rapid reactivation.

Exposure of yeast cells to a galactose environment
has a strong impact on the general physiology of the
organism [23], and therefore memory of this environ-
ment may confer a beneficial adaptation to subsequent
generations. Our results point out that this memory
resides on the accumulated Gal1 galactokinase that is
transmitted via the cytoplasm to successive genera-
tions. After a second exposure to galactose, Gal1 sets
up a Gal1-Gal4 positive-feedback loop that rapidly re-
leases the activation potential of the Gal4 activator. Our
model proposes that this cellular memory expires as
Gal1 concentration reaches a critically low level in prog-
eny cells grown in glucose by being gradually diluted
after each mitotic event.

Our results suggest that rapid reactivation of GAL
genes transcription clearly depends on the Gal3-like
function provided by the Gal1 protein and does not
require previous galactose metabolism per se: when
Gal1 was expressed by the ADH promoter in glucose-
growing cells, GAL genes were induced rapidly, resem-
bling the pattern displayed by galactose-pregrown cells,
and when Gal3 was expressed by the GAL1 promoter in
gal1D cells, which are unable to catabolize galactose,
cells’ memory was restored. We have to mention that
the key role of the Gal3 activity in determining both the
rate and the mode (binary versus graded) of GAL gene
activation has been recognized previously; rapid GAL
activation occurs in glucose-pregrown cells that ectop-
ically express Gal3, and similar rates of induction
were observed in cells pregrown in glycerol or raffinose
media, in which Gal3 expression is derepressed [7, 8]
(data not shown).

Our study on this yeast ‘‘adaptive cell memory’’ para-
digm strongly argues against a mechanism involving
self-propagating chromatin bookmarks that are ac-
quired upon prior transcriptional activation. In concert,
histone tail modifications (acetylation and methylation)
that were measured at activated yeast promoters,
including those of GAL genes, were removed upon de-
activation and hence can not be stably inherited through
cell divisions [24, 25]. On the other hand, a recent report
[6] has proposed that histone H2A.Z-dependent translo-
cation of the GAL cluster to the nuclear periphery upon
transcriptional activation, and its persistence after
growth in glucose is the basis for galactose memory. Be-
cause no evidence directly supporting this hypothesis
was presented, it is conceivable that the persistence
of altered topology of previously activated genes might
be just the consequence of chromosomal relocation
dynamics. In addition, this proposal is inconsistent with
the uniform cell pattern of GAL reactivation revealed by
our FACS analysis, because the persistent perinuclear
localization of GAL genes was observed for only a frac-
tion (w60%) of the population [6]. In another study [5],
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Swi/Snf function has been proposed to be required for
rapid reactivation of the GAL1 promoter in cells that
have been previously exposed to galactose. This was
shown to be evident for transcriptional memory after
only one generation, and it might simply reflect a require-
ment of this coactivator for the rapid transcriptional
reactivation set up by the Gal1-Gal4-positive loop. Our
results demonstrate that this system of transcriptional
memory has a cellular basis that targets the transcrip-
tional activator. In agreement, recent proposals impli-
cate DNA-binding transcriptional regulators rather than
chromatin modifications as the basis of epigenesis in
higher organisms (see for review [26]).
Experimental Procedures

Yeast Strains and Reporters

Yeast strains were derived from the wild-type strain FT5 (S288c,

GAL+) [27]. GAL1-GFP was constructed by inserting GFP at the 30

end of the GAL1 coding sequence of FT5 by standard homologous

recombination with a yEGFP-KanMX cassette amplified from

pFA6a-link-yEGFP-KAN [28] with synthetic primers (1A and 1B,

listed in Table S1), bearing regions homologous to 30 end of GAL1

ORF. Same methodology was used for generating the GAL7-GFP

carrying strain by tagging the 30 end of GAL7 ORF gene with yEGFP

with primers 3A and 3B (Table S1). GAL1 promoter-driven GFP

strains were constructed by homologous recombination with linear

yEGFP-KanMX DNA amplified from FA6a-link-yEGFP-KAN with

primers (4A and 1B, Table S1) designed so as to replace GAL1

ORF with the yEGFP sequence, thus creating a gal1D null mutation.

GAL3 gene was disrupted from wild-type strain by standard one-

step homologous recombination techniques, with linear KlTRP1

DNA amplified from PYM6 [29] with primers (2A and 2B) harboring

homologous 50 ends to the respective gene. To generate gal3D cells

fully expressing the GAL1-GFP reporter, wild-type cells were grown

in YP-2% galactose media and GAL3 disruptants were purified in

selective media with 2% galactose as a carbon source. Gene dele-

tion was confirmed by both PCR and phenotypic analysis. gal1D

strains were constructed by disrupting the GAL1 gene by a linear

DNA fragment containing the URA3 marker flanked by 50 and 30

GAL1 sequences and confirmed by PCR and phenotypic analysis.

The ADH1-driven GAL1 plasmid was constructed by in vivo three-

piece recombination process: a linear DNA fragment containing

the ADH1 promoter and a second one containing the entire GAL1

ORF and 30 UTR were amplified from the yeast genome by PCR

with primers (5A-5B and 6A-6B, respectively) designed to allow re-

combination with each other and with the pRS314 plasmid vector.

PCR products along with single cut pRS314 plasmid recombined

in vivo giving rise to an ADH1 promoter-driven GAL1 gene cloned

in pRS314. Recombinant plasmid was rescued in E. coli cells and

confirmed by sequencing analysis.

Growth Conditions and Flow Cytometry

Glucose-to-galactose induction experiments were performed with

cells inoculated in YP-2% glucose medium and cultured at 30�C

kept at low optical density (OD < 0.2) by continuous dilutions. After

(C) Single-cell pattern of GAL7-GFP reactivation in galactose-pre-

grown cells expressing Gal1 constitutively. Histograms representing

GFP distributions taken at 0 min (red), 150 min (blue), and 210 min

(green) after galactose induction. Cells carrying GAL7-GFP- and

ADH-driven Gal1 were grown for 24 hr in galactose medium, trans-

ferred in glucose for 12 hr and back to galactose, followed by

FACS analysis as in (B).

(D) Graphs of mean GFP values showing activation and reactivation

kinetics of GAL7-GFP transcription in cells constitutively expressing

GAL1. Mean values (at 30 min intervals) of FACS analysis presented

in (B) and (C) were plotted in brown (glucose-pregrown) or green

(galactose-pregrown) curves. The reactivation kinetics of GAL7-

GFP in wild-type strain (pink curve, taken from Figure S1) are shown

for comparison.
Figure 4. Role of Gal1 in Galactose Memory

(A) Reactivation kinetics of the GAL7-GFP reporter in galactose-

experienced gal1D mutants. Graphs represent mean GFP values

over time taken at 30 min intervals after galactose reactivation of

gal1D mutants (pink) and wild-type (green) cells. The activation

kinetics of glucose-grown gal1D mutants after galactose induction

is shown for comparison (blue). GAL7-GFP-expressing gal1D

mutants were grown in YP media containing 2% galactose plus

2% raffinose, transferred in glucose, reinduced in galactose (plus

reffinose) media, and subjected to FACS analysis.

(B) Single-cell pattern of GAL7-GFP activation in glucose-pregrown

cells expressing Gal1 constitutively. Histograms of FACS analysis at

representative time points showing GFP fluorescence measure-

ments taken from cells growing in glucose (red) and subsequent

growth in galactose for 150 min (blue) and 210 min (green). The

Gal7-GFP hybrid protein contains the entire Gal7 amino acid

sequence and is expressed from the native promoter and chromo-

somal position. Cells containing a plasmid expressing Gal1 by the

ADH1 promoter were cultured for 24 hr in 2% glucose, washed,

and transferred in 2% galactose medium.
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24 hr of growth, cells were washed twice with an equal volume of

water and transfered to prewarmed YP medium containing 2% ga-

lactose. For galactose to glucose and back to galactose (galactose

memory testing) experiments, cells were inoculated and cultured in

YP-2% galactose medium for 24 hr at 30�C, transferred to YP-2%

glucose, and cultured for 12 hr (keeping optical density OD < 0.2)

and then washed and transferred to YP-2% galactose, as above.

For FACS analysis, 250 ml of yeast culture (OD w0.2) in indicated

media and time points were harvested, washed, and resuspended

in PBS. FACS analysis was performed with Calibour instrument

(Becton Dickinson) in excitation and emission wavelength at 488

nm and 530/30 nm, respectively. Statistical analysis was performed

with the WinMDI application.

Supplemental Data

Five figures and one table are available at http://www.current-

biology.com/cgi/content/full/17/23/2041/DC1/.
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